Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 6: 140, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25926847

RESUMO

Study of genome incompatibilities in species hybrids is important for understanding the genetic basis of reproductive isolation and speciation. According to Haldane's rule hybridization affects the heterogametic sex more than the homogametic sex. Several theories have been proposed that attribute asymmetry in hybridization effects to either phenotype (sex) or genotype (heterogamety). Here we investigate the genetic basis of hybrid genome incompatibility in the haplodiploid wasp Nasonia using the powerful features of haploid males and sex reversal. We separately investigate the effects of heterozygosity (ploidy level) and sex by generating sex reversed diploid hybrid males and comparing them to genotypically similar haploid hybrid males and diploid hybrid females. Hybrid effects of sterility were more pronounced than of inviability, and were particularly strong in haploid males, but weak to absent in diploid males and females, indicating a strong ploidy level but no sex specific effect. Molecular markers identified a number of genomic regions associated with hybrid inviability in haploid males that disappeared under diploidy in both hybrid males and females. Hybrid inviability was rescued by dominance effects at some genomic regions, but aggravated or alleviated by dosage effects at other regions, consistent with cytonuclear incompatibilities. Dosage effects underlying Bateson-Dobzhansky-Muller (BDM) incompatibilities need more consideration in explaining Haldane's rule in diploid systems.

2.
PLoS One ; 5(1): e8597, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20087411

RESUMO

Homologous meiotic recombination occurs in most sexually reproducing organisms, yet its evolutionary advantages are elusive. Previous research explored recombination in the honeybee, a eusocial hymenopteran with an exceptionally high genome-wide recombination rate. A comparable study in a non-social member of the Hymenoptera that would disentangle the impact of sociality from Hymenoptera-specific features such as haplodiploidy on the evolution of the high genome-wide recombination rate in social Hymenoptera is missing. Utilizing single-nucleotide polymorphisms (SNPs) between two Nasonia parasitoid wasp genomes, we developed a SNP genotyping microarray to infer a high-density linkage map for Nasonia. The map comprises 1,255 markers with an average distance of 0.3 cM. The mapped markers enabled us to arrange 265 scaffolds of the Nasonia genome assembly 1.0 on the linkage map, representing 63.6% of the assembled N. vitripennis genome. We estimated a genome-wide recombination rate of 1.4-1.5 cM/Mb for Nasonia, which is less than one tenth of the rate reported for the honeybee. The local recombination rate in Nasonia is positively correlated with the distance to the center of the linkage groups, GC content, and the proportion of simple repeats. In contrast to the honeybee genome, gene density in the parasitoid wasp genome is positively associated with the recombination rate; regions of low recombination are characterized by fewer genes with larger introns and by a greater distance between genes. Finally, we found that genes in regions of the genome with a low recombination frequency tend to have a higher ratio of non-synonymous to synonymous substitutions, likely due to the accumulation of slightly deleterious non-synonymous substitutions. These findings are consistent with the hypothesis that recombination reduces interference between linked sites and thereby facilitates adaptive evolution and the purging of deleterious mutations. Our results imply that the genomes of haplodiploid and of diploid higher eukaryotes do not differ systematically in their recombination rates and associated parameters.


Assuntos
Diploide , Genoma , Recombinação Genética , Vespas/genética , Animais , Ligação Genética , Polimorfismo de Nucleotídeo Único
3.
Am Nat ; 172(3): 393-404, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18710342

RESUMO

Sex ratio theory offers excellent opportunities to examine the extent to which individuals adaptively adjust their behavior in response to local conditions. Hamilton's theory of local mate competition, which predicts female-biased sex ratios in structured populations, has been extended in numerous directions to predict individual behavior in response to factors such as relative fecundity, time of oviposition, and relatedness between cofoundresses and between mates. These extended models assume that foundresses use different sources of information, and they have generally been untested or have only been tested in the laboratory. We use microsatellite markers to describe the wild oviposition behavior of individual foundresses in natural populations of the parasitoid wasp Nasonia vitripennis, and we use the data collected to test these various models. The offspring sex ratio produced by a foundress on a particular host reflected the number of eggs that were laid on that host relative to the number of eggs that were laid on that host by other foundresses. In contrast, the offspring sex ratio was not directly influenced by other potentially important factors, such as the number of foundresses laying eggs on that patch, relative fecundity at the patch level, or relatedness to either a mate or other foundresses on the patch.


Assuntos
Adaptação Fisiológica , Comportamento Competitivo , Oviposição , Razão de Masculinidade , Vespas/fisiologia , Animais , Feminino , Masculino , Repetições de Microssatélites , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...